SPSS二元回归分析方法

来源: 软服之家2023-08-04 19:42:42
  

二元变量是数据统计中常用的一种变量,这种变量只有两个可能:是和否,对于这种变量来说,一般是很难进行直接的线性或非线性回归分析的。这时要探究变量之间的关系,就需要用到二元回归分析。


(资料图)

接下来我们就通过一个简单的示例来介绍一下IBM SPSS Statistics中如何对二元变量进行回归分析。

一、概述

1.样本数据

这是一份肿瘤患者体内肿瘤情况的统计表,通过二元回归分析,我们可以拟合年龄、肿瘤大小和扩散等级这三个变量与“癌变部位的淋巴结是否含有癌细胞”的回归关系。

2.二元logistic回归

在“分析”菜单下,可以打开“回归”中的“二元logistic回归”分析,这是SPSS提供的专门用于二元回归的一种分析方法。

二、操作指南

1.变量设置

将“癌变部位的淋巴结是否含有癌细胞”作为因变量,将剩余三个变量移入“协变量”窗口。

下面的方法设置的是协变量的输入方式,默认的“输入”就是将变量全部输入,其他的方法是根据一些特定的方法向前或向后剔除变量后再输入,我们这里使用“输入”即可。

选择变量是用来设置筛选变量的,本数据样本中变量较少,所以不使用这个功能。

2.分类设置

分类窗口设置分类协变量,我们这里的分类变量是“肿瘤扩散等级”,选择“指示灯”对比方法,“最后一个”参考类别。

3.保存设置

这是IBM SPSS Statistics分析中较为常见的一个分析保存对话框,用户可以在其中设置要保存的预测值、影响和残差,在需要保存的项目前勾选复选框即可。

勾选概率、组成员、杠杆值、标准化和协方差矩阵。

4.选项设置

这个对话框设置统计图和步进概率,勾选分类图、霍斯默-莱梅肖拟合优度,在每个步骤输出。

步进概率中设置进入概率和删除概率,前者数值应小于后者,保持系统默认即可。

5.完成分析

在输出日志中查看最终的分析结果,SPSS会为用户提供模型的相关参数,包括个案统计、显著性参数、模型拟合度参数等,本例中的显著性系数均较小,拟合参数较大,因此对于这三个自变量来说,因变量与它们的拟合效果并不明显。

关键词:

责任编辑:sdnew003

相关新闻

版权与免责声明:

1 本网注明“来源:×××”(非商业周刊网)的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,本网不承担此类稿件侵权行为的连带责任。

2 在本网的新闻页面或BBS上进行跟帖或发表言论者,文责自负。

3 相关信息并未经过本网站证实,不对您构成任何投资建议,据此操作,风险自担。

4 如涉及作品内容、版权等其它问题,请在30日内同本网联系。